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In the future, unmanned platforms will 
gain decision-making intelligence that 
enables them to autonomously operate in 
clusters to perform collaborative tasks. For 

successful field deployment of unmanned systems, opera-
tors will need confidence in artificial decision-making in 
uncertain environments. Adjustable autonomy technolo-
gies, concepts, and simulation environments to evaluate 
teaming behaviors will enable researchers to develop 
these systems. Network and sensing advances have cre-
ated the opportunity for increased mission performance, 
but at the expense of greater complexity in sensor coor-
dination and analysis. Current unmanned systems that 
are typically teleoperated and are labor intensive, since 
they rely on human operators and their decision-making 
capabilities to perform mission tasks. 

Today, both mission and sensing complexity are 
managed through increased automation of lower-level 
functions, helping operators focus on higher-level deci-
sions. The lower-order decision-making algorithms under 
development include those for waypoint following and 
collision detection and avoidance. Some of these capa-
bilities have been incorporated in operational platforms.

Deployment
A team of air and ground unmanned autonomous sys-
tems (UAS) might be deployed in a natural disaster relief 
scenario as depicted in Figure 1. In this example, a major 
earthquake has damaged buildings, roads, and bridges, 
and disrupted communication, power, and water distri-
bution services. A damaged nuclear energy facility also 

Unmanned aircraft systems (UAS) need to 
handle more autonomy and perform more 
intelligent behaviors. These systems will be 
deployed in clusters with human supervisors 
to perform collaborative missions. A UAS will 
take on expanded roles invoking higher-order 
decision-making functions and capabilities 
supporting autonomous mission planning, 
resource allocation, route planning, scheduling, 
and execution of coordinated tasks. 
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determine flight or road plans for scout vehicles to follow. 
The execution manager algorithm would see that the mis-
sion is performed and goals are met.

It is the job of the logistics planner algorithm to 
choose the actual sequence of waypoints such that it bal-
ances and reduces the risk among each component of the 
mission. However, to make well-informed decisions, the 
planner will need the scouts to gather additional data on 
areas the logistics vehicle may cross in the future. The 
scout dispatcher determines where to send the scouts, 
given the plans currently considered by the logistics 
planner. The execution of each plan carries with it some 
uncertainty in risk. This plan risk uncertainty is trans-
formed into map uncertainty. In other words, the scout 
dispatcher determines map locations that contribute 
most to uncertainty. It then tasks scouts to survey these 
areas to disambiguate candidate plans. Each scout’s exec-
utive planner accepts as inputs these areas and a time 

requires an immediate response. Relief convoys need to 
deliver supplies throughout the affected area. A team of 
UASs composed of autonomous aerial and ground scouts 
supervised by operators in a mission logistics vehicle is 
dispatched to survey the damage. The system needs to 
determine the safest path for the relief convoy to travel 
to reach its destination in the minimum amount of time.

Figure 2 presents an architecture for functions that 
this multiagent autonomous team would need to perform 
in this scenario. Human mission operators in the logistics 
vehicle would enter high-level goals, system constraints, 
and policies into the system. Resource allocation algo-
rithms would be employed to develop a system composi-
tion based on the mission objectives with the appropriate 
available resources, including platforms, sensor payloads, 
processors, and communication capabilities. Planner 
algorithms would develop platform route plans for opti-
mum survey coverage, and scheduling algorithms would 
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FIGURE 1. In this earthquake natural disaster relief scenario, a relief convoy needs to deliver supplies to those in 
need by the safest path. A team of aerial scouts supervised by operators in a mission logistics vehicle is dispatched to 
survey the damage and provide real-time route safety information.
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limit for reporting results on each area. The executive 
must also receive the current risk estimate or "belief " for 
the relevant area. The planner runs an adaptive sampling 
algorithm that is trained to fly the path that achieves the 
highest expected information gain within the time allot-
ted. As sensor measurements arrive, the belief update 
module incorporates them into the risk belief, and at the 
end of a sensing task, the scout reports the updated risk 
belief to the logistics executive.

For successful system field deployment, opera-
tors need confidence that autonomous decision making 
leads to optimal behaviors, especially when carried out 
in uncertain environments. A number of concepts and 
technologies are the subjects of current research to opti-
mize planning in uncertain environments. As shown in 
Figure 2, one strategy is to equip functional modules with 
risk-assessment capabilities. This strategy would allow 

adjustment of the system’s autonomy levels according 
to individual risk acceptance. At any time, an operator 
can monitor autonomy algorithm decisions, augment or 
modify algorithm inputs, or take over full manual control 
of selected vehicles.

Another strategy is the incorporation of rigorous 
verification processes within the UAS algorithm architec-
ture. Algorithm results or plan feasibility would be veri-
fied against operator risk acceptance as well as mission 
resource costs and system performance or autonomous 
behavior expectations. If conditions are not met, the sys-
tem may request new plans or request/task subgoals to 
reduce uncertainty, including tasking additional scout 
runs for surveillance information, satellite imagery, or 
other sensor information.

UAS's performance in collaborative tasks has not 
been thoroughly tested in uncertain environments and in 

FIGURE 2. Within the generalized multiagent autonomy architecture of the Autonomous Robot Control via Autonomy 
Levels (ARCAL) system, the logistics executive contains several submodules. Two of them are the high-level logistics 
planner, and the low-level road map planner, each containing a risk-assessment functionality that operates on the risk 
belief map. Together, these submodules determine the course of action for the logistics vehicle. The logistics planner 
accepts mission goals from the operator and generates sequences of waypoints, producing a high-level road map that 
will achieve the mission goals. Then, the road map planner finds the actual path taken between waypoints.
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fact, such testing requires entirely new methods. Accu-
rate behavioral simulation and metrics are both vital and 
lacking. The Autonomous Robot Control via Autonomy 
Levels (ARCAL) project seeks to establish a robust plan-
ning architecture for collaborative, multivehicle autono-
mous systems by testing UAS performance in uncertain 
environments.

Autonomous Robot Control via Autonomy Levels
ARCAL brings together researchers and engineers 
from both MIT’s main campus and Lincoln Labora-
tory. Researchers from the Model-based Embedded & 
Robotic Systems (MERS) Group at MIT have developed 
risk-based adjustable autonomy and task-directed adap-
tive sensing systems that can autonomously coordinate 
multivehicle missions with an overriding human operator. 
Engineers from Lincoln Laboratory's Airborne Networks 
Group developed a simulation environment to evaluate 
autonomous collaborative behaviors and to determine 
how well adjustable autonomy operations meet operator 
expectations.

The project specifically tests risk-based adjustable 
autonomy with task-directed adaptive sensing technolo-
gies and concepts to determine how tasks can be com-
pleted at different levels of autonomy. ARCAL utilizes 
a novel simulation environment to test collaborative 
autonomous algorithms and team behaviors prior to field 
deployment. Adjustable autonomy algorithms and func-
tions drive simulated UASs in three dimensional (3D) 
platform models that include dynamic environments 
similar to real-world conditions. 

Adjustable Autonomy with Risk Assessment
Adjustable autonomy hopefully combines the best ele-
ments of human intuition with computational prag-
matism. Challenges in creating a truly synergistic 
relationship between humans and computers and sen-
sors, given human variability and the limitations of com-
puter logic, have tended to obscure an exact definition of 
adjustable autonomy as a concept. In its most basic form, 
an adjustable autonomy system makes two kinds of deci-
sions: determining what future actions are optimal and 
how to engage the human operator in an optimal manner. 
Both of these capabilities depend on risk estimates and 
mission objectives, with risk explicitly incorporated in 
the planning process. Given the mission’s logistical plan, 

risks posed along each step of the plan are probabilities 
integrated over each mission goal. The configuration and 
distributions of these risks should inform optimal human 
engagement. An adjustable autonomy architecture opti-
mizes the risk and planning process to provide situational 
awareness (SA), keeping the human involved at the 
appropriate level of detail for each mission component. 

ARCAL’s contribution to adjustable autonomy is to 
encode risk throughout the decision-making process. 
In practice, scout aerial vehicles and other sensors can 
improve risk awareness throughout the mission. Scouts 
are specifically deployed to improve risk mapping and 
refine decision making. Algorithms guide scouts toward 
high-value information that will help identify the low-
risk pathways for future components of the mission. The 
scouts are first tasked with informational reconnaissance 
relative to the logistics planning. ARCAL performs some 
tasks offline (learning and simulation) to minimize the 
amount of online optimization needed. 

Architecture 
Algorithmic modules within the artificial intelligence 
architecture enable the incorporation of risk informa-
tion and the involvement of a human operator. Modules 
include the logistics executive, the scout executive, and 
the adjustable autonomy module. These components 
interact with the logistics vehicle, the scout vehicle, and 
the human operator, as depicted in Figure 2.

The logistics executive planner chooses the actual 
sequence of waypoints in a way that balances and reduces 
risk among each component of the mission. To make 
well-informed decisions, the planner needs information 
on potential vehicle paths from scouts. The scout execu-
tive dispatcher determines where to send the scouts, 
given plans currently under consideration by the logis-
tics planner. The risk associated with each plan carries 
some uncertainty, which can be transformed into map 
uncertainty. This uncertainty allows the scout dispatcher 
to identify map areas that generate the largest propor-
tion of plan uncertainty. Scouts then survey these areas 
to disambiguate candidate plans. Each scout’s executive 
runs a scout planner that accepts as inputs these areas 
and a time limit for reporting results on each area. The 
executive must also incorporate the current risk belief for 
the relevant area. The planner runs an adaptive sampling 
algorithm trained to traverse the path that achieves the 
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the success probability, i.e., a risk distribution.
Given this definition of risk, we describe below how 

to represent risk in a belief map. With this definition, we 
can build paths over the map and devise a risk distribu-
tion for each path. Finally, we explain how the scout mea-
sures and updates the risk belief map.

The belief map is represented by a grid of square 
cells. Each cell contains a distribution over the probabil-
ity of success if the vehicle traverses that cell in any direc-
tion, independently of all other cells. This interpretation 
allows us to use the Markov assumption (described below) 
when constructing paths are from sequential cells. In our 
belief map, we parameterize each cell with a mean and 
variance to represent a beta distribution. Not only does 
the beta distribution admit an intuitive interpretation, 
but its parameterization is also appealing for real-time 
calculation.

The belief map’s form makes it relatively straight-
forward to compose paths from cells; the distribution of 
the resulting path is an approximation. We rely on the 
Markov assumption that the probability of successfully 
traversing a certain cell is independent of the probabilities 
for other cells. Then, given a path of cells for which suc-
cessful traversal is a random variable, the success prob-
ability for the entire path becomes the product of each 
of the independent cell traversal probabilities. Unfortu-
nately, the true distribution for the entire path is not a 
beta distribution and cannot be analytically computed, so 
we approximate it as a Gaussian distribution, parameter-
ized by a mean and variance.

The testing simulation must also incorporate envi-
ronmental obstacles into the belief map. The sensor has 
algorithms for detecting and characterizing features of the 
environment. The scout’s camera, for example, would be 
interfaced with a pattern-recognition application for road 
fissures that would then communicate the fissure param-
eters to the success probability estimate. If the camera’s 
resolution is characterized by a variance, then the fissure’s 
risk distribution can be characterized, and the information 
is encoded into the grid cells occupied, effectively distribut-
ing the fissure’s risk over the area it occupies.

In summary, the simulation formulates risk as a dis-
tribution over a path, given a risk belief map. The map is 
gridded into cells, each of which contains a beta distribu-
tion. Paths are sequences of adjacent cells, with risk dis-
tributions represented as truncated and scaled Gaussians.

highest expected information gain within the time allot-
ted. As sensor measurements arrive, the belief update 
module incorporates them into the risk belief. By the end 
of a sensing task, the scout reports the updated risk belief 
to the logistics executive.

In a nonadjustable autonomy architecture, the 
human operator would interface directly with the logistics 
executive; here, the adjustable autonomy module medi-
ates their interaction. This module continuously monitors 
the risk associated with each mission component accord-
ing to the entire state of the logistics executive. It tracks 
the possibility that each component’s risk might exceed 
user-specified thresholds. As these risks evolve because of 
additional planning and updated risk beliefs, adjustable 
autonomy may request human intervention for particular 
mission components. Thus, while the human operator still 
specifies mission goals to the logistics planner, she now 
has an interface to override different components of the 
logistics executive at varying levels of control. Together, 
all of these modules provide a rational, risk-based opera-
tor interface.

Risk Assessment
A key capability of our system is assessing risk relative 
to the overall mission goals. Here, risk is defined as the 
likelihood that a logistical plan will or will not achieve 
each and every goal, where a subgoal may involve driving 
an emergency, utility, or personnel transport vehicle to a 
needed location. Plan success is provisionally defined as 
the probability of success in all of the parts of a plan. The 
risk assessment problem then becomes as follows:

Given a path plan that nominally achieves overall 
mission goals, and a belief map of the environ-
ment, we compute a distribution over a path’s 
success probability, that is, the probability that 
a ground vehicle can successfully traverse that 
path. We cannot know the true path success 
probability since we do not have a true map of the 
environment. However, we possess a belief map 
that models the location of features and obstacles 
within the environment as well as our uncertainty 
about them. We may know, for example, that a 
certain type of obstacle exists in a general vicinity 
but not know its precise location and threat level. 
Thus, we must compute, and our algorithms 
must operate on, a probability distribution over 
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Scout Planner 
The scout executive obtains more detailed scans of certain 
areas that could yield safe routes for the logistics vehicle, 
as illustrated in Figure 3. While the logistics executive 
tasks the scouts with examining certain areas, it would be 
inefficient for a scout to traverse each area in an equitable 
manner by spending the same amount of time in each 
area. For example, a human operator would immediately 
fly/drive a vehicle to the most uncertain areas in order to 
gain the most value from reconnaissance. The scout has 
only limited time to complete reconnaissance and report 
back to the logistics executive. The scout planner algo-
rithm incorporates scout observations and directs scouts 
to collect data that optimally reduce risk uncertainty for 
the logistics vehicle.

Figure 4 highlights the scout planner portion of the 
ARCAL architecture and various components of the scout 
planner algorithm. The scout planner dictates the policy 
for which paths the scout should take. The policy is typi-
cally encoded as a value function. A typical scout scenario, 
however, is so computationally intensive that the value 
function would require the processor to have unreason-
able volumes of storage space. The iteration process thus 
approximates the value function to yield nonoptimal but 
reasonable solutions. Calculations are performed offline, 
and the approximate solution is stored in an approxi-
mate value function. When the time comes for the scout 
to execute online actions, it further reoptimizes the value 
function according to its particular situation given com-
putational constraints.

ARCAL’s scout-planning problem is formulated as 
follows:
• The scout dispatcher tells the scout which subset of 

the full map needs to be surveyed to reduce uncer-
tainty in the risk belief. 

• This subset is represented as a set of grid cells. Each 
grid cell is associated with a prior risk distribution. 

• The scout’s goal is to fly a path over the area in an al-
lotted time such that it maximizes the total reduction 
in variance over these grid cells. (The total variance 
reduction is the sum of all variance reductions in each 
grid cell.) 

ARCAL uses the general framework of the Mar-
kov decision process (MDP) to model the problem and 
approximate dynamic programming (ADP) to solve 
it. [1, 2] MDPs operate on discrete time steps. When an 
MDP executes an action from a “current” state, there is 
a probability of transitioning to a “next” state in the next 
time step, and the expected reward associated with that 
transition is calculated. ADP generates policy solutions 
that assign an action to each state of the MDP. The value 
of a state under a specific policy is the expected sum of 
discounted rewards obtained when the policy is followed. 
The objective is to find an optimal policy that maximizes 
the value of every state. 

For a policy to be optimal, it must choose actions that 
maximize the expected value of the subsequent state. In 
other words, the optimal action moves to the next-best 
state, and then plans from that new state. The optimal 
policy derives from solving for the optimal value function. 
For the scout-planning problem, we define the following 
components of an MDP:
• The state includes the vehicle location and belief map 

(i.e., risk distributions over the relevant grid cells).
• The action set refers to scout vehicle movement op-

tions. In our problem, the available actions are left, 

FIGURE 3. In this rescue scenario, he logistics executive  tasks an aerial scout team (here, three 
UAS) to identify traversable paths from a set of possible paths. The scout planner algorithm allocates 
resources in response to the need for locating a safe route and quantifying the path risks to the rescue 
vehicle and the mission.



16 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

right, and straight at any grid cell.
• Reward is defined as the total reduction in uncertain-

ty for the relevant grid cells. It is calculated by taking 
the sum over all reductions in variance resulting from 
the Kalman filter-based updating of the state from the 
scout's observations.

It should be noted that the state space includes the 
belief map, in addition to the location and pose (three 
dimension of location plus a "pointing" direction of the 
scout). This information is a necessary part of the state 
because the reward in transitioning between states is 
solely defined by the reduction in variance. Given high 
initial uncertainty, traversing new cells decreases vari-
ance more than moving between cells whose uncertainty 
is already low. Including the belief map makes the state 
space continuous. 

Figure 5 shows the offline scout algorithm. The scouts 
use approximate dynamic programming to create a pol-
icy for acting in the world. A policy interfaces states and 
actions by instructing scouts in given situations. Their 
state space includes not only location, pose, and risk but 
also uncertainty in the risk map belief. Computing the 
value function is computationally intensive, so ARCAL 

approximates it offline through value iteration before the 
mission starts. The approximation simulates scout recon-
naissance of high-value areas and saves snapshots of the 
simulation as data points in a table (Q table or Q func-
tion). We then generate an approximation architecture on 
each iteration by regressing over these data points, taking 
representational uncertainty into account. [3]

Action Selection Algorithm
A central question is how to choose the actions to reeval-
uate. As stated previously, the offline algorithms gen-
erate a state-action value function and a tree of paths. 
The simulation then decides how deeply (the number of 
steps forward) and how broadly to reevaluate, in terms 
of the number of actions to reevaluate and the number 
of samples per action. We assume that we do not have 
enough time to reevaluate every action over the planning 
horizon and thus only evaluate actions with promising 
outcomes, given uncertainty about those outcomes. This 
selection uses the offline state-action value function. 
The function provides an estimate of the value (future 
cumulative reward) for each action, assuming the cur-
rent state. The estimate actually includes a distribution 
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described by a mean and variance. The distribution cap-
tures how well we know a given value: a high variance 
distribution means that we do not know the value very 
well, and a low variance distribution means that we know 
it precisely. We select a sample from these distributions, 
one for each action, and then choose the action with the 
highest sample value. If one of the action distributions 
consistently produces a high sample value, we know we 
have little reason to evaluate other options. However, if 
there is a state-action value distribution with an espe-
cially high variance, the action will sometimes produce 
a sample with the highest value even though its mean is 
lower. This phenomenon mirrors the probability that said 
action is the best, given what we know. In other words, we 
explore the actions in proportion to their optimality and 
how certain we are about this parameter. In other words, 
we determine which actions to reevaluate by represent-
ing the uncertainty about their true value. This uncer-
tainty distribution is used to select actions (Figure 6) for 
reevaluation that appear to be good, but uncertain. We 
may also evaluate less optimal plans whose true value is 
subject to high variance.

To summarize, our method allows us to use offline 
knowledge and processing to guide our scouts online—the 
offline policy informs the additional online processing. 
We can exploit both on-and offline control processing in 
a complementary way. 

The action-selection process describes a family of 
algorithms because changing the search horizon and 
branching factor fundamentally changes the algorithm. 
For example, if we use a very small branching factor with 

a long horizon, the algorithm closely resembles the rollout 
algorithm. Rollout is a long-standing algorithmic method 
originally developed to evaluating moves in the game of 
backgammon, which was repurposed to evaluate MDP 
policies in general. [4] On the other hand, using a short 
horizon with a large branching factor closely resembles 
model predictive control. The optimality of different 
configurations depends on different applications and the 
stage of the mission. For example, toward the end of a 
mission, it could be helpful to use a wider search (larger 
branching factor) to make sure that we appropriately con-
sider the end goal. Further extensions to our algorithm 
may include using different branching factors at differ-
ent levels of the search tree. For example, it is easier for 
a function to capture long-term objectives than short-
term details. This small extension would therefore allow 
the algorithm to rely more on offline knowledge in the 
middle of the mission (where long term evaluation is suf-
ficient) and more on simulation at the beginning and end 
of the mission (where short tem information is critical). 
Configuration parameters thus determine the appropri-
ate algorithm among the possible alternatives. Selecting 
algorithms in this way enables us to design systems that 
are broadly applicable to many applications.

Demonstration of Results
At this stage, we are currently designing and implement-
ing ARCAL’s logistics executive and adjustable autonomy 
components. We have implemented the scout path-plan-
ning algorithm, which includes the path-planning prob-

FIGURE 6. Some steps need to be evaluated in a timely in-
flight manner—online. The online process describes a family 
of algorithms that change the search horizon and branch-
ing factor and determine which plans needs to reevaluated 
online.

FIGURE 5. The scouts use approximate dynamic program-
ming to learn a policy by simulating reconnaissance and 
updating the value of each action.

1. Which collection path contributes the most to
 keeping the rescue vehicle safe? 
2. Are we sure?
3. Reevaluate uncertain and viable alternatives.
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lem, the offline value iteration procedure, and the online 
search for decision making. Overall, the scenarios task the 
scout to reduce variance within a 10-by-10 gridded area, 
but the areas of high variance differ across scenarios. To 
show how our scout finds efficient sensing paths, we focus 
on scenario A, which includes high variance across the 
entire map, thus simulating a setting of incomplete prior 
information for a region.

Scenario A runs with a mission length of 25 time 
steps. Within the scenario’s context, we first illustrate 
the evolution and convergence of the approximate values 
function during value iteration. We use 100 samples to 
represent the state subset. The scout can be within any of 
100 unique grid cells, with four possible orientations in 
each, and an infinite number of possible map beliefs. Our 
value function representation is thus extremely sparse 
relative to the actual state space. We display paths con-
structed during online execution to show how the scout 
chooses to survey areas with higher uncertainty that are 
within time constraints. The tree search algorithm is lim-
ited to 20 node traversals of computation, but searches 
down to a depth of 7 nodes.

STATE SPACE SAMPLING

Figure 7 depicts the state-action value function evolving 
over 10 sets of value iteration. The x-axis represents dif-

ferent sampled states in our lookup table, and the y-axis 
shows the values associated with those states. When que-
rying the value of a state, we are not actually querying, 
but rather representing the estimation architecture that 
interpolates over the sample states in the table. However, 
to aid conceptual convenience and transparency, we will 
refer to the plots as the value function plots. The sample 
states were constructed by initializing a simulated sce-
nario four times and letting the scout fly a predetermined 
raster pattern that sweeps across the area for the 25-step 
length of the mission. [5] To avoid gathering the exact 
same data each time, we introduced stochasticity into the 
path and increased it with each subsequent pass.

Our method samples a state "trajectory," which is a 
path through the state space during a representative mis-
sion. Give a mission starting point, we employ a default, 
or initial, policy in order to choose initial actions. This 
"on-policy" approach tends to explore states that are likely 
to occur. We inject some random decisions into the policy, 
which allows the system to explore actions (and the asso-
ciated states) that are "outside of the envelope."

The result is shown as a sequence on value function 
plots in Figure 7. At first, the values for each sample state 
are initialized with low random noise (not visible at the 
scale shown). In subsequent iterations, the values accrue 
at each step because each state “looks ahead” to the next 
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FIGURE 7. The approximate dynamic programmer (ADP) iterates through the state-action value functions. The 
above graphs, taken at the zeroth, fifth, and tenth  time points (of the ten iteration steps) in the policy learning process, 
depict the value of each action (left, straight, right) in a series of policy driven trajectories through the state space. The 
objective of the repetitive reinforcement learning process is to generate a function that attributes (maps) a value to 
the three actions for every state in the state space. However, only a subset of the states can be sampled because of the 
very large state-space size. Each graph shows four spikes for four trajectories. The values are higher at these mission 
start points because there is more information to collect, and lower at the ends of the missions because there is less 
information remaining. The value functions become more pronounced as the become more informed by the reinforced 
learning process. The important result is for the function to be able to discern which action (left, straight, right) has 
the greatest value. 
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best state and adds that state’s value to its own reward 
(i.e., variance reduction) for taking the action leading into 
that state. The values gradually converge (i.e., the increase 
at each step gets smaller) since accrual is increasingly dis-
counted over subsequent iterations. However, the most 
interesting parts of these plots are the four peaks that 
correspond to when the scout passes over high variance 
areas and realizes large rewards. The reward subsequently 
decreases for this area. The figures illustrate how the value 
function effectively encodes and exploits the structure of 
belief variance.

Figure 8 shows the algorithm’s path construction at 
time steps 1, 10, 17, and 25. The upper plot in each frame 
shows belief variance with a color scale, while the lower 
plot shows the scout’s path for the given time step. The 
diagram shows that the scout travels south into the area 
of highest uncertainty and traverses it until the end of the 
mission. Note how the scout systematically whittles away 
the belief variance in the top plots. We rescaled the colors 
so that areas with the highest remaining variance always 
appear yellow, and thus show how they guide and attract 
the scout. The scale changes significantly by the end of the 
mission, demonstrating the extent of variance reduction.

This example shows that our scout planning algo-
rithm finds a path through an area such that it purpose-
fully surveys the most uncertain features, thus generating 

the most valuable data for the logistics planner through 
a combination of the offline value iteration and online 
search procedures. The flexibility of our algorithm arises 
from the Markov decision process framework, which eas-
ily adapts to any given scenario. An important detail of 
our approach is that, since we cannot exactly represent 
the value function, we acknowledge it by introducing sto-
chasticity into our decision making. Thus, our nondeter-
ministic solutions, while rarely optimal, are robust in the 
presence of this uncertainty. When integrated within the 
ARCAL system, the scouts can thus effectively contribute 
to real-time logistical planning.

Autonomy Simulation Environment
To further assess autonomous behaviors in changing 
environments, the ARCAL project is also developing a 
UAS simulation environment (shown in Figure 9). This 
environment includes a software infrastructure in which 
collaborative autonomy algorithms and system behaviors 
can be evaluated according to physical, environmental, 
and network effects. Accelerated three-dimensional visu-
alization of the simulation provides demonstrative context 
for the candidate algorithms. Metrics are being developed 
to assess proper UAS decision making for autonomous 
behavior in multi-vehicle and hierarchical configurations.
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FIGURE 8. Row one and two respectively show the belief uncertainty and scout path for our sce-
nario. The top row visualizes the belief uncertainty (variance) map at time steps 1, 10, 17, and 25; 
the yellow reflects a higher uncertainty and red reflects a lower uncertainty. The bottom row visual-
izes the data collection path. Loc indicates the current location of the scout. 
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FIGURE 9. The UAS simulation environment architecture leverages and integrates two powerful 
simulation tools: MÄK Technology's VR-Forces simulation framework for computer generated forces 
and OPNET’s Modeler simulation for high-fidelity communications. A well-defined interface is then 
specified to drive autonomous vehicles and to simulate communication and other interactions within a 
dynamic environment. 

Environment Framework and Components 
MÄK Technology's VR-Forces (VRF) is a simula-
tion framework for computer-generated forces (CGF), 
allowing for scenario generation and behavioral mod-
eling of ground, air and sea entities (UASs, ground 
vehicles). [6, 7] VRF entities have 3D volumetric rep-
resentations that interact with a specified terrain or 
the overall environment. Each entity has a parameter 
database that describes its physical and behavioral char-
acteristics. The simulation engine uses these parame-
ters as it interacts with the terrain and other entities. 
Scenario generation consists of generating a terrain 
and all simulation entities, which are assigned a plan 
consisting of smaller tasks. Similar to robotic systems, 
VRF uses a component architecture made up of sensors, 
controllers,and actuators. These components combine 
to form behavioral systems. The Laboratory framework 
uses a customized application component interface 
(API) to provide input to the autonomy algorithms. 
VRF outputs its object state over a distributed architec-
ture for computer simulation systems called high-level 
architecture (HLA). This is a CORBA-like middleware 
that allows for federated applications using the same 

simulated objects. VRF includes a detailed graphical 
user interface (GUI) front end that subscribes to objects 
over HLA and renders them, along with the terrain, in 
an accelerated 3D environment. 

It is important to model accurate network effects 
because of their relevance in algorithm design. Leverag-
ing the fact that in VRF, communication effects can be 
exported to an external server, we were able to integrate 
OPNET modeler, a separate discreet event simulator, 
that excels in network simulations. [9–11] Communica-
tions between entities are sent over HLA to an OPNET 
simulation whose timing is synchronized with VRF. By 
using VRF with customized component systems to pro-
vide behavioral modeling of UASs within a 3D terrain, 
along with a front-end graphical visualization engine and 
OPNET Modeler to provide communication effects, we 
have a high-fidelity combination of software technologies 
and APIs with which we can test and evaluate candidate 
autonomy algorithms. [12]

In order to support the ARCAL search and rescue 
scenario description, we needed the ability to discrimi-
nate terrain by using low-flying platforms. We assume 
that our UASs are equipped with sensors that are able to 
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discriminate between various terrain types (e.g., paved 
road, shallow to deep water, grass, boulders). In addition 
to identifying these terrain patches, we must determine 
whether a given area has been disturbed from its previous 
terrain type. We introduce a terrain “flag” that represents 
a drastic change to a cell’s terrain. The sensors on the UAS 
detect terrain conditions and upload them to their over-
head view of the area.

Sensor Modeling
We equip the UAS model in VRF with a custom coarse-
grained sensor that uses the terrain API to read what type 
of terrain exists in each cell as the UAS flies over it. For 
each terrain patch, two values are stored in a matrix: a 
“prior,” which represents the risk of a given terrain (e.g., 
paved road is low risk, deep water is high risk), and a “vari-
ance,” which represents the sensor’s certainty of detection. 
A fine-grained sensor is equipped on a second UAS. It 
detects disrupted terrain and supplies updated variance 
values to further reduce uncertainty.

The UAS with the lower-resolution sensor flies in a 
simple raster pattern over an area of interest, forming 
the initial matrix of priors and variances. This low-reso-
lution reconnaissance is a bootstrapping phase that can 
be cached. The scenarist can then apply calamity effects to 
the terrain by dropping a flag that represents a disruption 
of that terrain patch. Alternatively, a random application 
of calamity effects can be generated and overlaid onto the 
terrain. At this point, the priors matrix is split up into 
units for further refinement. For visualizing the sensed 
area, each sensor has a visual cone angle that captures 
the ground state as the UAS flies over the terrain. For the 
fine-grained sensor, terrain cells are initialized with val-
ues that represent a function of their priors and variances. 
The dynamic program uses the priors matrix to instruct 
UASs with high-resolution sensors on where to go so as 
to improve the priors matrix, narrow variances, and oth-
erwise detect the terrain’s real state. 

As the UASs refine the priors matrix, communication 
occurs by sending data to the OPNET simulation, sub-
jecting the data to the wireless effects of the configured 
channel and terrain, as well as the communication effects 
of the configured radio. We are currently using a single 
candidate autonomy algorithm in the ARCAL simulation 
framework, but most of the framework development itself 
is agnostic with respect to the candidate algorithms. 

As development of the Lincoln Laboratory ARCAL 
simulation framework continues, we are putting together 
an initial demonstration of some of the capabilities that 
will ultimately be integrated into the full infrastructure. 
Offline processing that uses the MIT scout path-planner 
algorithm inputs terrain characteristics into the ARCAL 
simulation environment to generate algorithm decisions. 
The demonstration will showcase the ability of the coarse-
grained sensor to create a priors matrix for a given ter-
rain and the fine-grained sensor’s ability to further reduce 
variances by flying paths determined offline by the Model-
based Embedded & Robotic Systems (MERS)  algorithm’s 
dynamic program (developed by MIT’s MERS Group).

The simulation assumes a single UAS rastering a 
given swath of terrain. The priors matrix is written to a 
file processed by a MATLAB script provided by MERS. 
The texture value enumerations that were recorded cor-
respond to one of several supported “surface types” (e.g., 
asphalt, grass, deep lake, boulder). Next, the algorithm 
is run on the priors matrix to determine flight paths for 
the UASs. These flight paths are then imported back into 
VRF. The high-resolution sensor will follow these paths 
with the “terrain painting” customized GUI plug-in 
enabled (Figure 10). The terrain will be mapped in order 
to reduce variances. Ultimately, this processing will inte-
grate with the simulation itself, and the aforementioned 
communications processing with OPNET will be used to 
exchange information among entities. 

Looking Forward
In the future, unmanned platforms will gain high-order 
decision-making intelligence, form teams, and perform 
collaborative tasks. The ARCAL project represents two 
complementary areas of research that increase opera-
tor confidence in future autonomous system behaviors. 
The first incorporates concepts of risk-based adjustable 
autonomy with risk verification within system functions 
and task-directed adaptive search techniques. An opera-
tor can adjust the autonomy level, employ autonomy 
functions, or revert to fully manual control at any time. 
The second involves new methods to effectively test and 
evaluate collaborative autonomous team behaviors prior 
to field deployment via a high-fidelity, interactive simula-
tion environment with 3D visualization.

Natural disaster relief scenarios were used to develop 
and validate the concepts and technologies used in this 
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and network conditions. An initial concept capabilities 
demonstration under development uses task-directed 
search algorithms for planning paths for UAS scout vehi-
cles to follow so as to update a terrain risk belief map. 
This map is used in the ARCAL system architecture so 
that adjustable autonomy algorithms can plan efficient 
pathways. 

This technology requires risk-based reasoning devel-
oped through formal models and algorithms. The archi-
tecture for such reasoning (in a context of path planning) 
must include characterization of temporal risk. Tempo-
ral coordination is an essential aspect of any mission that 
requires multiple activities to be executed in sequence or 
simultaneously, with future tasks depending on the com-
pletion of earlier tasks. The problem of assessing temporal 
risk is scheduling the activities such that they are proba-
bilistically robust against scheduling uncertainty. This 
article formally described two algorithmic approaches 
to this problem, demonstrating one approach through 
experiments. 

project. In these simulations, a team of UASs is dispatched 
to determine the most efficient path for a logistics vehicle. 
The autonomous algorithms, concepts, and technologies 
can be used with the UAS simulation environment and 
for other situations.

This article also introduced the theoretical basis for 
adjustable autonomy used during control and supervision 
of a team of UASs performing a collaborative task. Task-
directed search algorithms for UAS scout path planning 
improved knowledge of the risks to the mission. An algo-
rithm test battery was developed and used to run tests on 
the scout path-planning algorithms. The ARCAL system's 
architecture incorporates autonomy algorithms that were  
tested with the natural disaster recovery scenario. Initial 
results show that the algorithm performs effectively.

The UAS simulation environment integrates com-
mercial state-of-the-art simulation and modeling prod-
ucts. It serves as a software infrastructure for evaluating 
candidate collaborative autonomy algorithms and system 
behaviors under very specific physical, environmental, 

FIGURE 10. In this simulation, high-resolution sensors “paint” the terrain as the variances are reduced via data collection. 
The circles mark to location of the UAS and the yellow lines point the direction of the UAS sensors.
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Today, both mission and sensing complexity are man-
aged through increased automation that allows operators 
to abstract away from lower-level functions and focus on 
high-level goals. The operator specifies goals at a cer-
tain level of abstraction and then relies on automation 
to achieve them. The result is a significant collaboration 
between humans and automation. Decisions traditionally 
made by humans are now automated and significantly 
improve the probability of a successful mission.

Sensing advances have increased mission perfor-
mance in terms of faster execution and greater complex-
ity. By providing relevant data with great immediacy, the 
sensors can immensely accelerate mission planning and 
execution. However, improved mission performance also 
requires greater sensing complexity in sensor coordina-
tion and analysis. Sensing an environmental feature may, 
for example, require a network of sensors operating in 
a coordinated manner. Trade-offs between coverage and 
resolution must be considered, and further trade-offs for 
resource scarcity are magnified if heterogeneous sensors 
are involved. To interpret the data from multiple sensors, 
data would need to be integrated and analyzed. Finally, 
rapid response requires real-time sensor coordination and 
data analysis.

Networked sensing systems are enabling unprece-
dented levels of mission performance through significant 
collaboration between human operators and advanced 
automation. In the last decade, advances in low-cost 
computation and networking have transformed single-
instrument sensors into networked systems of mobile 
elements. For example, aerial surveillance is progress-
ing from being a mission conducted by a single-piloted 
aircraft to a continuous operation maintained by teams 
of smaller and less expensive UAS. The result has been 
a dramatic increase in the observational capabilities and 
response times of sensing systems. The multitude and 
mobility of sensors can yield not only greater coverage, 
but also greater depth and precision than achieved pre-
viously. Sensor networks can also offer redundancy and 
immediacy. Rather than being a single point of failure, 
sensing becomes a service whose performance improves 
or degrades gracefully with the number of sensing assets.

Acknowledgments
To carry out this work, researchers and engineers from 
MIT campus and MIT Lincoln Laboratory were collabo-
rated. Researchers (Lawrence Bush, Andrew Wang, and 
Prof. Brian Williams) from the MERS Group at MIT 
developed the theoretical basis for risk-based adjustable 
autonomy and task-directed adaptive sensing in order to 
autonomously coordinate multivehicle missions while 
keeping the operator in the loop. Jeffrey McLamb, of Lin-
coln Laboratory’s Airborne Networks Group developed 
the simulation environment to understand and evaluate 
autonomous collaborative teaming behaviors, with an 
emphasis on facilitating operator confidence for supervi-
sory control. The authors would also like to acknowledge 
Michael Boulet, Bernadette Johnson, Jerry Jaeger, and 
Matthew Kercher for their support of this research. ■

References
1. Bertsekas, D.P., Dynamic Programming and Optimal Con-

trol, vol. 1, ed. 3, Cambridge, Massachusetts, MIT Press, 
2005. 

2. Bertsekas, D.P., Dynamic Programming and Optimal Con-
trol, vol. 2, ed. 3, Cambridge, Massachusetts, MIT Press,  
2007. 

3. Tsitsiklis, J.N. and Van Roy, B., “Feature-based Methods for 
Large Scale Dynamic Programming,” Machine Learning, vol. 
22, no. 1, 1996, pp. 59–94.

4. Bertsekas, D.P. and Castanon, D.A., "Rollout Algorithms for 
Stochastic Scheduling Problems," Journal of Heuristics, vol. 
5, no. 1, 1999, pp. 89–108. 

5. Tesauro, G., “Temporal Difference Learning and TD-Gam-
mon,” Communications of the ACM, 1995. 

6. Sutton, R.S. and Barto, A.G., Reinforcement Learning: An 
Introduction, 1998. 

7. http://www.mak.com/products/simulate/vr-forces.html
8. Gao, H., LI, Z., and Zhao, X., "The User-defined and Func-

tion-strengthened for CGF of VR-Forces [J]." Computer 
Simulation, vol. 6, 2007, p. 62.

9. http://en.wikipedia.org/wiki/OPNET#Corporate_history
10. Lucio, G.F., et al., "Opnet Modeler and NS-2: Comparing the 

Accuracy of Network Simulators for Packet-level Analysis 
Using a Network Testbed." WSEAS Transactions on Comput-
ers, vol. 2, no. 3, 2003, pp. 700–707.

11. Meenakshi, B., Rajput, R., and Gupta, G., "Mobile Ad Hoc 
Networking (MANET): Routing Protocol Performance 
Issues and Evaluation Considerations." The Internet Society 
(1999).

12. Hammoodi, I.S., et al., "A Comprehensive Performance 
Study of OPNET Modeler for ZigBee Wireless Sensor Net-
works," Next Generation Mobile Applications, Services and 
Technologies, 2009. NGMAST'09. Third International Con-
ference on. IEEE, 2009.



24 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

This sidebar discusses the overall 
mission architecture. In the scenario 
of a transport convoy responding to a 
natural disaster, teams of ground vehi-
cles with trained responders must tra-
verse unknown terrain to reach people 
in need. The mission goals are to
• Deliver provisions, administer 

medical care, transport victims to 
hospitals or shelters, repair infra-
structure, and set up field stations;

• Transport responders throughout 
the affected region, performing 
each task according to its priority.

• Task robotic aerial scouts to study 
terrain.

The role of automation is to coor-
dinate these tasks by planning naviga-
tion for ground vehicles while human 
responders focus on their tasks (Fig-
ure S1).

Figure S1 illustrates a disaster 
ground-relief scenario. A team wait-
ing at a depot has been tasked with 
picking up a patient at location A, 
transporting him to the hospi-
tal, and unloading supplies at 
the shelter at B along the way. 
The navigation planner gener-
ates possible paths along roads 
from the depot to A, A to B, 
and B to the hospital. The risk 
threshold, which pertains to 
the patient transport task, may 
not exceed 5%. The total risk 
specifically includes success-
ful traversal across damaged 
roads on a one-hour deadline. 
The depot, A, and the hospital 
are on one side of a river, while 
B is on the other side. The only 

feasible paths to and from B (given 
the deadline) traverse bridges that 
may have been critically damaged. A 
longer path that avoids these bridges 
leads from the depot to B and incurs 
the least traversal risk. The final stage 
from B to the hospital may require 
aerial scouts to survey three candi-
date bridges.

While the transport team is pick-
ing up the patient at A, scouts relay 
the information that only one of the 
bridges is traversable and, further-
more, the roads from this bridge to B 
pose a 10% risk to the patient. Oper-
ators can either accept the additional 
risk or take the patient to the hospital 
first and then visit the shelter at B, but 
the longer path and nightfall will make 
it harder to drive safely through dam-
aged roads.

The architecture can also incor-
porate unforeseen developments 
(both positive and negative) that 
affect the risk distribution. A person 

on the response team, for example, 
may be able to perform some sort of 
triage on the patient en route, giving 
the team a longer window to reach the 
hospital. With the deadline extension, 
the automation is able to find a plan 
that addresses B and results in 6% 
risk to the overall mission completion.

In assessing the mission risk, 
the automation must consider (1) the 
uncertainty of whether one can tra-
verse roads successfully and in a 
timely manner relative to other mis-
sion segments, and (2) the possible 
repercussions if roads are not pass-
able within the risk tolerances. For 
instance, two of the bridges are untra-
versable, and the third has traffic or 
requires more care in traversing and 
therefore more time. The simulation 
considers an off-road alternative in 
the absence of traversable roads. This 
iteration of the simulation would send 
scouts to assess the off-road terrain 
in a timely manner, so that the risk 

map is current by the time the 
patient at A is picked up. Mul-
tiple vehicles were not consid-
ered in this scenario, but in a 
plan that involves a rendezvous 
point, vehicles would ideally 
converge simultaneously to 
conserve resources, stream-
line other tasks, and minimize 
risk.

The main article describes 
how to plan and model the suc-
cess probability of a planned 
path through a landscape 
affected by a natural disaster 
or crisis. The algorithm calcu-

Temporal Risk Assessment

A
B

Depot

FIGURE S1. A transport scenario may include multiple 
tasks with associated risks. A patient at location A needs 
to reach a hospital within one hour. People in location B 
need access to shelter before nightfall. 
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lates the risk belief distribution of a 
path according to risks encountered. 
Once risks for each potential path are 
known and the optimal path has been 
determined, responders still face the 
challenge of minimizing and prioritiz-
ing response times for different crisis-
related tasks. Response time and the 
coordination of tasks according to 
temporal constraints are essen-
tial aspects of the planning archi-
tecture. A mission may call for 
multiple activities to be executed 
in sequence or simultaneously. 
Temporal risk management requires 
the coordination of tasks in a way that 
is probabilistically robust against tem-
poral uncertainty. 

Previous research has shown 
that an iterative risk reallocation algo-
rithm capitalizes on the structure of 
the desired temporal coordination 
(e.g., identifying scheduling conflicts 
and trying to solve them) to better 
serve the operator in real-time tem-
poral risk management. Risk real-
location requires an algorithm that 
makes local, iterative adjustments but 
has global guarantees of identifying a 
schedule that meets the risk criteria. 
As with other forms of risk, the adap-
tive sampling algorithm can reduce 
temporal risk by evaluating it within 
the mission model and evaluating risk 
estimates according to overall mission 
risk thresholds. The planner deter-
mines a task ordering (i.e., schedule) 
that satisfies the mission’s temporal 
goals with a certain probability.

Calculating the exact risk 
becomes increasingly difficult with 
more complex mission structures. 
Finding the optimal schedule is not 
typically a tractable approach. The 
most practical approach finds a fea-
sible schedule that obeys some mini-

mum failure rate. First, we formally 
define the scheduling problem through 
a specification of chance-constrained 
temporal goals and temporal uncer-
tainty. Then, we restrict the solution 
space to scheduling strategies that 
are strongly controllable (i.e., a com-
plete schedule that is robust against 
future uncertainty). 

After defining the problem, we 
reformulate it in terms of another tem-
poral problem with uncertainty. This 
reformulation decouples chance and 
temporal constraints, and maps the 
strong controllability condition into 
strong controllability for another, pre-
viously studied problem. The principle 
behind our reformulation is to allocate 
temporal risk to each activity’s dura-
tion. Each allocation reduces an activ-
ity’s probabilistic model of temporal 
uncertainty into an interval bound. 
Thus, satisfaction of the chance con-
straint depends wholly on the risk 
allocation, while temporal constraints 
are evaluated solely on the structure 
of the interval bounds for duration. 
We choose an interval-bounded refor-
mulation because it transforms the 
structure of temporal uncertainty into 
one that is addressable by efficient, 
controllability-checking algorithms. A 
strong controllability version of these 

algorithms is described and exploited 
by our algorithm. The problem can 
then be reformulated into solvable 
form.

Given a simple temporal net-
work, find a schedule that satisfies its 
chance constraint.
• Drive to A. Pick up patient.
• Drive to B. Deliver shelter supplies.
• Drive to hospital. Unload patient.

We assume that the transit com-
ponents of each task are uncontrolla-
ble because of road conditions, while 
the rest of the tasks are controllable 
but have specific temporal require-
ments. Operator-imposed temporal 
constraints begin upon arrival at an 
accident scene. In the ongoing opera-
tional example, the constraint might 
be that once the patient has been 
moved, the transport team must reach 
an emergency room within 60 min-
utes or the patient dies, immediately 
nullifying the value of the operation.

Figure S2 illustrates the encod-
ing of this scenario as a probabilistic 
simple temporal network (pSTN). 
Uncontrollable events are squares 
and represent arrival times. Uncon-
trollable durations are represented 
by dotted arrows, while controllable 
durations and temporal constraints 
are represented by solid arrows. Each 

FIGURE S2. The probabilistic simple temporal network encodes the disaster 
relief scenario and the timing risks in seconds.
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arrow is labeled with its respective 
constraint (in minutes). Each control-
lable duration and simple temporal 
constraint has a lower and upper tem-
poral bound as follows:
• Picking up and loading the patient 

at A takes at least 5 minutes.
• Delivering shelter supplies takes at 

least 10 minutes.
• Unloading the patient at the hospi-

tal takes at least 1 minute.
• Finally, the patient must reach the 

hospital within 60 minutes of the 
pickup time.

Each uncontrollable duration has 
a continuous probability distribution 
built from awareness of road condi-
tions. Constraint satisfaction prob-
lems can be represented as graphs 
with variables as vertices and con-
straints as edges. Graphs elucidate 
the dependency structure among 
constraints based on the constraints’ 
shared variables.

Risk allocation distributes the 
chance constraint’s specified failure 

probability over the various sources of 
uncertainty. In our case, these sources 
are the uncontrollable durations. 
Assuming an interval bound as a dura-
tion’s domain effectively assigns risk 
to that duration (i.e., the probability 
that the realized duration will fall out-
side the interval). The combination of 
each duration’s assumed interval then 
becomes the macro interval under 
consideration. 

This type of risk allocation 
enforces structure, which enables 
evaluation of both conditions. Specifi-
cally, the structure becomes a recti-
linear parallelopiped, with the axes 
aligned within the uncontrollable out-
come space. The assumption that all 
durations are independent of each 
other means that conditions may be 
evaluated as the product of prob-
abilities for each duration and strong 
controllability can be easily veri-
fied. Placing interval bounds on each 
uncontrollable duration reformulates 
the pSTN as a simple temporal net-

work with uncertainty (STNU). In con-
trast to probability distributions with 
infinite domains, these hard-bounded 
assumptions of temporal uncertainty 
simplify the controllability-checking 
criteria. Thanks to previous research, 
efficient algorithms exist to check 
both the strong and dynamic forms of 
STNU controllability. Risk allocation 

effectively restricts the solution to 
a series of small components (i.e., 
durations) that are easy to adjust 
to satisfy the conditions of the sce-

nario.
Figure S3 shows the disaster 

relief scenario in reformulated form. 
Note that the temporal structure 
remains virtually unchanged. Events, 
nodes, and durations remain in their 
original locations. However, each 
uncontrollable duration now has a 
lower-bound variable and an upper-
bound variable. The highlighted prob-
ability mass is the likelihood that the 
duration will land in between these 
bounds or between the inverse of the 
risk assigned to that duration.

Controllability can then be 
checked by using a specific grounded 
disaster relief scenario. Checks can 
identify events that become uncontrol-
lable under certain constraints, thus 
removing those events from consid-
eration within scenarios. After cycling 
through certain constraints, the over-
all STNU can itself be evaluated for 
controllability. 

FIGURE S3. The original pSTN scenario  is now reformulated as a simple tem-
poral network with uncertainty 
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